Multistack products are key components in the new Saanich Peninsula Thermal Energy Recovery System that is saving the British Columbia Capital Region District (CRD) significant annual operating costs and eliminating 377 tons of greenhouse gas emissions per year—equivalent to removing 79 passenger vehicles from the road.

The CRD was recently awarded the Federation of Canadian Municipalities Sustainable Community Award for this system. Saanich Peninsula is located southwest of Vancouver B.C., across the Strait of Georgia on Vancouver Island.

A team led by Opus DaytonKnight Consultants with DEC Engineering was selected for the design and construction of the Saanich Peninsula Thermal Energy Recovery System. The system captures thermal energy from wastewater effluent to provide supplemental hot water and space heating for the Panorama Recreation Centre. Treated waste water effluent is pumped to heat exchangers where heat energy is transferred to the District Energy System (DES). The DES loop delivers energy to the Multistack Dedicated Heat Recovery Chiller (DHRC) at the Panorama Recreation Centre.

Tom Ren, Project Engineer for Alternative Energy at DEC Engineering, said, “We wanted to design a “mini-plant” solution that was unique and yet applicable across North America. Space in the mechanical room at the Panorama Recreation Centre was already very limited. We considered numerous ideas, eventually deciding to use a Haakon air handling unit enclosure that contains the Multistack DHRC chiller, pumps, controls and electrical load center. It’s very similar to a rooftop air conditioning unit except that it sits on the ground. It was important that it be packaged and secure to protect the components.”

Another advantage of the mini-plant enclosure is that because it is not a new building or building addition, DEC didn’t need to complete a complex building permit approval process.

The Multistack DHRC uses thermal energy in the DES loop to provide hot water at the necessary pool heating system temperatures for the Panorama Recreation Centre. Trane Northwest, the Multistack representative in British Columbia, provided two Model MS70X chiller modules installed in the Haakon outdoor enclosure along with pumps, piping and controls. Multistack DHRC units are available for many hydronic heating applications and produce hot water up to 180 degrees F while simultaneously producing chilled water for cooling systems.

The CRD was recently awarded the Federation of Canadian Municipalities Sustainable Community Award for this system. DEC Engineering’s “mini-plant” solution with the Multistack DHRC chiller is unique yet applicable across North America.

Continued on next page...
Using heat from the DES offsets natural gas used to heat water in the existing PRC boilers. This generates immediate savings because the reclaimed effluent energy is essentially free. In addition, greenhouse gas emissions are greatly reduced by replacing natural gas combustion with clean BC hydroelectricity. Multistack DHRC units are ideal for application in hospitals, data centers, and hotels that have a constant cooling load from computer rooms, labs, and storage areas while requiring heat for hot water, processing, and sterilization. With a DHRC system, building owners can save money and significantly reduce carbon footprint. DHRC units can generate hot water from 110-180°F and have proven to be three times more efficient than a gas boiler.

John Curran, Trane Northwest National Accounts Executive, said, “The mini-plant recovers heat energy from the district waste-water treatment plant and transfers that energy to the Recreation Center for the swimming pool and ice arena.”

The waste-water plant currently treats 9,000 cubic meters of waste water per day representing over 4MW of potential power with plans to increase that capacity in the future. Connected to the DES, each individual Multistack DHRC mini-plant delivers up to 12,000 kWh daily.

ADJ Austin & Denholm Industrial Sales Inc. completed the plumbing and pump installation while Trane Northwest installed the controls, managed the job site coordination and commissioned the chillers. Curran added, "This was a great team effort that allowed us to provide the customer with a completely packaged unit that simply required power and fluid connections."

Tom Ren adds, “Another reason we decided to use the Multistack DHRC (Dedicated Heat Recovery Chiller) is that these units can produce the high water temperatures (up to 180 degrees F) required for the project—conventional chillers can’t produce those temps. We’ve used Multistack products on many other projects. Multistack is committed to helping their customers find solutions to their needs. They think outside the box to find a solution.”

Controls Critical
According to Tom Ren, the Multistack DHRC chiller controls were a critical aspect of the project. “The Multistack control system allows the DHRC chiller to extract as much heat as possible from the wastewater system. Traditional heat recovery chillers will trip out with colder water and that has been a problem on other projects with other chillers that use controls less sophisticated than Multistack.”

The DES project was initiated in June, 2011, and had a total value of $3.3 million dollars. The Canadian Federal Gas Tax Agreements funds came from the Saanich Peninsula Wastewater System Sewer Debt Reserve Fund. Three more mini-plants are planned as the Saanich community continues to grow. The CRD plans to eventually connect to the DES not only the wastewater treatment plant offices, a school and the government greenhouse plant, but also the growing urban community.

The original Panorama Recreation Centre renovation and aquatic complex expansion was completed and opened in October, 2009. Construction started on March 10, 2008 and included removal of the original 1977 building, while retaining the pool and including the original 1977 building, while retaining the pool and including...
About DEC Design Mechanical Consultants Ltd.
DEC is an innovative Canadian engineering corporation at the forefront of sustainable systems design and construction. Embracing the concept of energy conservation and sustainability, DEC's engineers, technologists and designers are dedicated to the use of recoverable and renewable energy for heating and cooling buildings, from single structures to entire communities. DEC has offices in Vancouver and Victoria, British Columbia.

The benefits of DEC's District Energy Sharing System (DESS) versus traditional systems are impressive: 50 percent reduction in externally-sourced energy requirements; 50 percent reduction in externally-sourced water requirements; significantly reduced infrastructure capital, construction and operating costs; and significantly reduced environmental impact.

DESS uses surplus energy from one facility to meet the energy needs of another. A DESS acts to provide on-demand heating and cooling where needed, and to recapture and redistribute the excess thermal energy normally rejected by heating and cooling processes. Thermal energy from non-traditional sources throughout the community — waste-water treatment facilities, ice rinks, data centres, and refrigeration plants — can be exploited by connecting them to the network. As a DESS expands, grids are built to optimize the balancing of heating and cooling loads across a community. New energy sources on each additional grid, evaluated in terms of how well they help to balance swings in heating and cooling demands, provide increased energy-source redundancy. Often this means smaller, more localized sources can be effectively used. This technique provides for infrastructure construction and energy-source integration to be staged in a manner that reflects the scale and phase of development. The goal is to achieve net-zero energy consumption across the community, even though each structure or node on the network may not itself be a net-zero structure.

Further, the dual-pipe architecture of the network is designed to support the distribution of reclaimed, clean effluent for non-potable water uses such as toilet flushing, irrigation, and laundry. Ultimately, a DESS creates the backbone with which an environmentally balanced community can grow by enabling cost effective use of modern sustainable technologies.

About Multistack
The best HVAC companies are no longer the biggest. The best companies are—the best! They are best at helping customers meet their needs and achieve their goals. They are best because they're agile—using technology, innovation, creativity and sustainability to bring a wide range of excellent products and services to building owners and operators. Multistack is exactly that kind of company with products that offer high efficiency, redundancy, expandability, serviceability, low sound and minimal carbon footprint. Multistack boasts speedy ship cycles including best-in-the-industry modular chillers.

Multistack LLC is a great business founded on the HVAC industry's core principle of making life better for people. Multistack leverages and applies the value of good ideas to an outstanding array of HVAC products and systems—all made in the U.S.A.