Water Cooled MagLev™ Centrifugal Modular Chiller

Product Data Catalog
MS-080T
Multistack Modular Flexibility with MagLev™ Centrifugal Compressor Performance

80-Ton Modules for Up to 850-Ton Chiller Arrays

Cutting Edge Compressor Technology
- MagLev™ compressor with magnetic levitation bearings
- Oil-free design
- Quieter than typical background noise
- Soft start—only 2 amps at 460V
- Superior part load efficiency
- Integrated VFD control
- Environmentally friendly R-134a refrigerant; low refrigerant volume qualifies for LEED® EA credit

Superior Dependability
- Multiple independent systems for redundancy
- Comprehensive computer monitoring
- Automatic lead-lag
- Automatic fault recording

Easy Installation
- Compact modules fit through most doorways and into freight elevators - ideal for retrofit and renovation projects
- Modules connect quickly and easily
- Factory charged and run-tested
- Small refrigerant charge compliant with ASHRAE 15 in most cases

High Flexibility
- Install only the capacity required as needed, when needed
- Operates only the capacity required by the load
- Integrates fully with building management through BACnet®, ModBus®, or LON

Serviceability
- Service can be performed on a convenient, non-emergency basis
- Optional Total Access™ configuration makes service even easier by placing heat exchangers at outside of frame

High Performance in a Small Footprint

Optional Total Access™ Configuration Makes Service Even Easier

Contents
- Features, Benefits...............................2-3
- General Information..............................4
- Dimensions..5-8
- Piping Diagrams....................................9
- Electrical Data.....................................10
- Guide Specifications..............................11-13
Master Controller
- Stages and monitors status of up to eight MS-080T modules.
- Provides interface with all system variables and set points.

LCD Display
- 4X20 character backlit LCD displays system and chiller variables and status of both compressor and chiller system performance.
- Displays (but not limited to) refrigerant temperatures and pressures, water temperatures, compressor speeds (actual and desired), detailed fault information, compressor run hours, and system capacity.

System Interface Portal
- Integrates chiller with building management system through BacNet®, ModBus®, or LON.

Module Controller and Hand-Off/Auto Control
- Receives direction from the master controller and provides for stand-alone operation if the master controller fails or if master controller communication is lost.
- Each module controller communicates directly with its module’s MagLev™ compressor through ModBus® providing advanced controls.

Advanced Controls

10-Year Limited Powertrain Warranty Available

Control Box

Circuit Breaker *(Hidden)*

Buss Bar

Module Sensor

Chilled Water

Compressor

Condenser

Water
Water-Cooled MagLev™ Modular Chiller

Model Number Information

<table>
<thead>
<tr>
<th>MS</th>
<th>080</th>
<th>T</th>
<th>C or N</th>
<th>1</th>
<th>H</th>
<th>1</th>
<th>W</th>
<th>0</th>
<th>A</th>
<th>A</th>
<th>-134a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Refrigerant</td>
<td>Condenser</td>
<td>Evaporator</td>
<td>AHRI Version - if applicable</td>
<td>Application</td>
<td>Module Number (1 - single, 2 - multiple)</td>
<td>Voltage</td>
<td>Configuration</td>
<td>Compressor (MagLev® Centrifugal)</td>
<td>Module Nominal Capacity (80 tons)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Series

1 Standard, 2 Total access, 3 Evap extended headers, 4 Cond extended headers, 5 Both extended headers, V others
2 H 460/3/60, C 575/3/60, E 400/3/50, F 380/3/60, V other
3 A Air Cooled split, D Cond unit, F Fluid cooler (high temp), W Water cooled
4 A Brazed SS, B Brazed SMO, V Other
5 A Brazed SS, B Brazed SMO, C S&T Copper, D S&T Cu-Ni, V Other

GENERAL DATA

Compressor Type MagLev™ Centrifugal
Dry weight (lbs.) 265
Normal Capacity (tons) 80 Tons
Quantity 1
Evaporator Brazed Plate
Weight (lbs.) 417
Water Storage (gallons) 11.5
Quantity 1
Header System (gallons) 15.1
Condenser Brazed Plate
Weight (lbs.) 484
Water Storage (gallons) 12.6
Quantity 1
Header System (gallons) 15.1
Refrigerant Type/Charge (lbs./circuit) R-134a
80 lbs. w Brazed Plate Condenser
110 lbs. w Shell & Tube Condenser
Number of Circuits 1
Operating Weights (lbs.) 2,880 (2,550 Total Access)
Shipping Weight (lbs.) 2,600 (2,270 Total Access)
Enclosure Panel Weight Addition - Per Module 177 lbs.

Multistack has a policy of continual improvement and reserves the right to change product design, literature and specifications without notice. For more information on this and other Multistack products, contact your nearest Multistack dealer.
Typical MS-080T Chiller Modules
No Enclosure Panels
Refer to Submittal Drawings for As-Built Dimensions

Water-Cooled MagLev™ Modular Chiller

Dimensions

Master Control
(May Be On Either End)

Multiflush™
(May Be On Other Side)

64" Recommended Service Clearance
32" Recommended Service Clearance

Junction Box

High Voltage Side
42" Multistack Recommended Clearance
For Required Electrical Clearances Consult Local and National Electrical Codes

36" Recommended Service Clearance

Entering/Leaving Condenser Water
(May Be Other End)

Entering/Leaving Chilled Water
(May Be Other End)

42" Recommended Service Clearance

Main Power Connection for Multiple Modules May Be On Either End.

NOTE:
Main Power Connection for a Direct Connect Chiller is Inside the Module.

Solenoid Valve
N.C. 1-1/4" N.P.S. Full Port Drain Hose
(By Others)Minimum Size Vibration Isolators 4"x4"x3/8". Max. Load 50 P.S.I.

4"x4"x1/8" Wall Structural Foot Rails Resting on Waffle Vibration Isolators, 32" Ctr./Ctr., Supplied by Others

Base Rail Length = (No. of Modules x 32") + 8"

Drain w/ hose BIBB (2)
Chilled and Condenser Water Connections
4 Stubs Ea. 8"
Sch40 Steel Pipe Butt Weld or Grooved Connection.
Pressure Taps 9" 21-3/8" 28" 32" Typ.

Number of Modules x 2"

68-1/2" 23-3/4" 64-1/8" 4" 3/8" 13-1/2" 13-1/2" 21" 23-7/16" 7-7/16" 47-9/16" 9-1/4" 8-15/16" 7-7/16"
Water-Cooled MagLev™ Modular Chiller

Dimensions

Typical MS-080T Chiller Modules
With Enclosure Panels

Refer to Submittal Drawings for As-Built Dimensions

- **Solenoid Valve (N.C.)**
 - 1-1/4" N.P.S.
 - Full Port

- **Entering/Leaving Condenser Water**
- **Entering/Leaving Chilled Water**
 - (May Be Either End)

- **Service Clearance**
 - 42" Recommended
 - 36" Recommended

- **High Voltage Side**
 - 42" Multistack Recommended Clearance

- **Junction Box**
 - 32" Recommended

- **Base Rail Length**
 - = (No. of Modules x 32") + 8"

- **Main Power Connection**
 - for Multiple Modules: May Be On Either End.
 - NOTE: Main Power Connection for a Direct Connect Chiller is Inside the Module.

- **Connections**
 - 8" SCH40 Steel Pipe / Groove Connection

- **Pressure Taps**
 - 9"
 - 1-1/2"

- **Drain**
 - w/ hose BIBB (2)

- **Vibration Isolators**
 - 4"x4"x1/8" Wall Structural Foot Rails Resting on Waffle
 - Vibration isolators, 32" Ctr./Ctr., Supplied by Others

- **Pressure Taps**
 - 4" SCH40 Steel Pipe
 - Butt Weld or Grooved Connection

- **Junction Box**
 - Supplied by Others

- **Multiflush™**
 - (May Be On Either End)

- **Main Power Connection**
 - for Multiple Modules: May Be On Either End.

- **NOTE:** Main Power Connection for a Direct Connect Chiller is Inside the Module.
Water-Cooled MagLev™ Modular Chiller

Dimensions

Optional Total Access™ Configuration With Endflange Panels
Refer to Submittal Drawings for As-Built Dimensions

Typical MS-80T Chiller Modules

Number of Modules x 34"

Pressure Taps

Main Power Connection for Multiple Modules May Be On Either End.
NOTE: Main Power Connection for a Direct Connect Chiller is Inside the Module.

Solenoid Valve (N.C.) 1-1/4" N.P.S. Full Port

Chilled and Condenser Water Connections 4 Stubs Ea. 8" Sch 40 Steel Pipe Butt Weld or Grooved Connection.

Base Rail Length = (No. of Modules x 34") + 8"

4"x4"x1/8"-Wall Structural Foot Rails Resting on Waffle Vibration Isolators, 32" Ctr./Ctr., Supplied by Others

Minimum Size Vibration Isolators 4"x4"x3/8" Max Load 50 P.S.I.

Entering Chilled Water
Leaving Chilled Water
Leaving Condenser Water
Entering Condenser Water

30-1/2"
24-1/2"
30-1/2"
101-1/2"

19-1/2"
82"
53-1/2"
66-3/4"
29-1/2"

22"
39-1/2"
53-1/8"
39-1/2"
22"
40-1/8"

3/8"
7/8"
3/8"

9" Pressure Taps

Main Power Connection for Multiple Modules May Be On Either End.
NOTE: Main Power Connection for a Direct Connect Chiller is Inside the Module.

Solenoid Valve (N.C.) 1-1/4" N.P.S. Full Port

Chilled and Condenser Water Connections 4 Stubs Ea. 8" Sch 40 Steel Pipe Butt Weld or Grooved Connection.

Base Rail Length = (No. of Modules x 34") + 8"

4"x4"x1/8"-Wall Structural Foot Rails Resting on Waffle Vibration Isolators, 32" Ctr./Ctr., Supplied by Others

Minimum Size Vibration Isolators 4"x4"x3/8" Max Load 50 P.S.I.

Entering Chilled Water
Leaving Chilled Water
Leaving Condenser Water
Entering Condenser Water

30-1/2"
24-1/2"
30-1/2"
101-1/2"

19-1/2"
82"
53-1/2"
66-3/4"
29-1/2"

22"
39-1/2"
53-1/8"
39-1/2"
22"
40-1/8"

3/8"
7/8"
3/8"

9" Pressure Taps

Main Power Connection for Multiple Modules May Be On Either End.
NOTE: Main Power Connection for a Direct Connect Chiller is Inside the Module.

Solenoid Valve (N.C.) 1-1/4" N.P.S. Full Port

Chilled and Condenser Water Connections 4 Stubs Ea. 8" Sch 40 Steel Pipe Butt Weld or Grooved Connection.

Base Rail Length = (No. of Modules x 34") + 8"

4"x4"x1/8"-Wall Structural Foot Rails Resting on Waffle Vibration Isolators, 32" Ctr./Ctr., Supplied by Others

Minimum Size Vibration Isolators 4"x4"x3/8" Max Load 50 P.S.I.

Entering Chilled Water
Leaving Chilled Water
Leaving Condenser Water
Entering Condenser Water

30-1/2"
24-1/2"
30-1/2"
101-1/2"

19-1/2"
82"
53-1/2"
66-3/4"
29-1/2"

22"
39-1/2"
53-1/8"
39-1/2"
22"
40-1/8"

3/8"
7/8"
3/8"

9" Pressure Taps

Main Power Connection for Multiple Modules May Be On Either End.
NOTE: Main Power Connection for a Direct Connect Chiller is Inside the Module.

Solenoid Valve (N.C.) 1-1/4" N.P.S. Full Port

Chilled and Condenser Water Connections 4 Stubs Ea. 8" Sch 40 Steel Pipe Butt Weld or Grooved Connection.

Base Rail Length = (No. of Modules x 34") + 8"

4"x4"x1/8"-Wall Structural Foot Rails Resting on Waffle Vibration Isolators, 32" Ctr./Ctr., Supplied by Others

Minimum Size Vibration Isolators 4"x4"x3/8" Max Load 50 P.S.I.
Required Chilled Water Piping

Pressure Taps
Supplied and installed by Multistack.

1/2" Sensor Pockets
Supplied by Multistack for installation in Multistack supplied pipe stubs. To be installed by others.

Standard “Y” Strainer
Supplied and installed by others. Note: Select strainer based on water quality.

Strainer Isolation Valve
Supplied and installed by others.

Chilled Water Pump
Supplied and installed by others.

From building load
To building load

Multistack Chiller

Chiller Isolation Valve
Supplied and installed by others.

Flow Switch
Supplied and installed by others.

Condenser Piping with Head Pressure Control

Pressure Taps
Supplied and installed by Multistack.

1/2" Sensor Pockets
Supplied by Multistack. Install pockets 30 inches from end of chiller; supplied and installed by others.

Standard “Y” Strainer
Supplied and installed by others. Note: Select strainer based on water quality.

Strainer Isolation Valve
Supplied and installed by others.

Flow Switch
Supplied and installed by others.

Condenser Water Pump
Supplied and installed by others.

3-Way Condenser By-Pass Valve
Recommended, supplied and installed in the building by others.

From cooling tower
To cooling tower

Multistack Chiller
Water-Cooled MagLev™ Modular Chiller

Electrical Data

Legend
1. Components and wiring by others. (18 AWG Min. wire).
2. Inputs to terminals 4 through 8 of TB11 must be wired closed if not used.
3. External inputs (Closed to operate).
 - EX1 Manual reset required to resume operation.
 - EX2 Auto reset (Remote start/stop).
 - EX4 Auto reset (Power phase monitor [optional] input).
 - FS1 Flow switch (Chilled water).
 - FS2 Flow switch (Condenser water).
 - MS1 Aux. interlock (Chilled water pump starter).
 - MS2 Aux. interlock (Condenser water pump starter).
 - RS+ Reset signal (Software selectable 0-10 VDC, 4-20 mA).
 - RS- Reset signal (Software selectable 0-10 VDC, 4-20 mA).
4. External outputs.
 - CAR Customer alarm relay (24 VAC, 5 VA max).
 - CPR Condenser pump relay (24 VAC, 5 VA max).
 - FLR Full load relay (24 VAC, 5 VA max).
 - DRSV Debris removal solenoid valve (24 VAC, 6 W, 16VA).
 - Max of (2) DRSV in this circuit.
5. Sensor Inputs
 - ECW Entering condenser water.
 - LCW Leaving condenser water.
 - ECHW Entering chilled water.
 - LCHW Leaving chilled water.

System Wire and Fuse Sizing

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Volts/Hz/PH</th>
<th>Tons</th>
<th>Compressor RLA</th>
<th>LRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-080T1</td>
<td>460/60/3</td>
<td>80</td>
<td>96</td>
<td>132</td>
</tr>
<tr>
<td>MS-080T1</td>
<td>575/60/3</td>
<td>80</td>
<td>78</td>
<td>110</td>
</tr>
</tbody>
</table>

Wiring Sizing
(MCA = minimum circuit ampacity)
MCA = (1.25 x RLA1*) + RLA2 + RLA3

Fuse Sizing
(MF = maximum fuse size)
MF = (2.25 x RLA1*) + RLA2 + RLA3

Notes:
1. *RLA1 = RLA of the largest motor in the system. RLA2 & RLA3 = RLA of other motors in the system.
2. Wire sizing is based on National Electrical Code (NEC) rating for 75°C wire, with 3 wires per conduit.
3. Wiring distance from branch circuit shall not exceed 100 feet.
Multistack Water-Cooled Chillers, MS-080T, Guide Specifications

PART 1 GENERAL
1.01 SUMMARY
A. Section Includes:
1. Design
2. Performance Criteria
3. Refrigerants
4. Controls
5. Installation Requirements

1.02 REFERENCES
A. ARI 550/590-2003
B. ANSI/ASHRAE 15
C. ASME Section VIII
D. NEC
E. UL
F. CSA
G. OSHA as adopted by each individual State

1.03 SUBMITTALS
A. Chiller dimensional drawings with elevation overview. Drawings to include required service clearances, location of all field installed piping and electrical connections.
B. A summary of all auxiliary utility requirements for normal system operation required. Auxiliary utility requirements include: electrical, water, and air. Summary of auxiliary equipment shall include quantity and quality of each specific auxiliary utility required.
C. Chiller Control documentation to include: Chiller control hardware layout, wiring diagrams depicting factory installed wiring, field installed wiring with points of connection, and points of connection for BAS control/Interface points.
D. Sequence of operation depicting overview of control logic used.
E. Installation and Operating Manuals.
F. Manufacturer certified performance data at full load in addition to either IPLV or NPLV.

1.04 QUALITY ASSURANCE
A. Regulatory Requirements: Comply with the codes and standards as defined in Section 1.02 titled REFERENCES
B. Chiller is required to be run tested at manufacturer’s facility prior to shipment. Report available upon request.

1.05 DELIVERY and HANDLING
A. Chiller modules shall be delivered to the job site completely assembled and charged with complete refrigerant charge.
B. Installing contractor to comply with the manufacturer’s instructions for transporting, rigging, and assembly of modular chiller.

1.06 WARRANTY
A. The manufacturer’s equipment warranty shall be for a period of (1) One year from date of equipment start up or 18 months from date of shipment, whichever occurs first.
B. The compressor(s) shall be provided with a Limited Powertrain Warranty for a period of (10) Ten years from date of equipment shipment. Powertrain shall be defined as the compressor shaft, motor, magnetic bearings, and touchdown bearings.
C. Extended warranty on parts and labor available by request. The warranty shall include parts and labor costs for the repair and or replacement of defects in components or workmanship.

1.07 MAINTENANCE
A. Maintenance of the chiller shall be the sole responsibility of the owner.

Multistack has a policy of continual improvement and reserves the right to change product design, literature and specifications without notice. For more information on this and other Multistack products, contact your nearest Multistack dealer.

PART 2 PRODUCTS
2.01 Operating Conditions
A. Provide water-cooled liquid chiller with the capacity as scheduled on drawings at job site elevation listed in Section 13050.
B. Chiller shall be designed to operate using R-134a Refrigerant.
C. Chiller shall be designed for parallel evaporator water flow.
D. The liquid to be chilled will be water containing corrosion inhibitors.
E. Chiller shall be designed to operate using ___volts, 3 phase, 60 (50) Hz electrical power supply.

2.02 Water-Cooled Packaged Chiller
A. Approved manufacturer is MULTISTACK.
B. System Description: Chiller shall incorporate two stage centrifugal Compressor with magnetic bearings and consist of a single 80 ton refrigerant circuit. Each refrigerant circuit shall consist of an individual compressor, condenser, evaporator, thermal expansion valve, and control system. Each circuit shall be constructed to be independent of other circuits from a refrigeration and electrical stand-point. The chiller system must be able to produce chilled water even in the event of a failure of one or more refrigerant circuits.
C. General
1. Chiller Modules shall be ETL listed in accordance with UL Standard 1995, CSA certified per Standard C22.2#236.
2. Modules shall ship wired and charged with refrigerant. All modules shall be factory run tested prior to shipment on an AHRI certified or 3rd party verified test stand.
3. Compressors, heat exchangers, piping and controls shall be mounted on a heavy gauge, powder coated steel frame. Electrical controls, and associated components for each module shall be mounted within that module.
D. Chilled and Condenser Water Mains: Each module shall include supply and return mains for both chilled and condenser water. Cut groove type end connections are provided for interconnection to eight inch standard (8.625 inch outside diameter) piping with grooved type couplings. Water Mains shall be installed such that they are beneath any power or control wiring so as to insure for safe operation in the event of condensation or minor piping leaks.
E. Evaporators and condensers: Each evaporator and condenser shall be brazed plate heat exchangers constructed of 304 stainless steel; designed, tested, and stamped in accordance with ASME code for 300 psig working pressure on the evaporator and 650 psig working pressure on the condenser. Both the condenser and evaporator heat exchanger shall be mounted below the compressor, to eliminate the effect of migration of refrigerant to the cold evaporator with consequent liquid slugging on start-up.
F. OPTIONAL: Shell and Tube Condenser
Each condenser shall be standard shell and tube design, constructed of carbon steel shell and copper tubes; designed, tested, and stamped in accordance with ASME code for 300 psig working pressure on the refrigerant side and 150 psig working pressure on the water side.
G. OPTIONAL: Variable Flow Operation - Chilled and/or Condenser Water Chiller shall incorporate integral open/close condenser and/or evaporator motorized butterfly valves.
H. Compressor:
1. Unit shall have a direct drive oil-free two-stage semi-hermetic centrifugal compressor complete with active / passive magnetic bearing system. Casing shall be constructed from aluminum and shall not weigh more than 300 lbs each. The electronic soft starters, compressor controls, inverter power electronics, bearing and motor control shall be fully integrated into the compressor and shall be digitally controlled. The magnetic bearing system must be fully protected in the case of a power outage with its own built in power generation system.
2. The impeller shall be statically and dynamically balanced. The compressor shall be vibration tested and not exceed a level of 0.14 IPS.

Continued on next page.
3. The capacity control should primarily be achieved by varying the compressors operating speed and a movable inlet guide vane shall only be used in the case of a surge or choke condition arising during normal operation. The moveable inlet guide vane shall be of the electro-mechanical type.

4. Bearing System: The compressor shall use an oil-free bearing system of the digitally controlled homo-polo magnetic bearing type. The bearings shall have a fully integrated back up bearing system and shall have a self generating power system so that the bearings shall be able to stay levitated in the case of a power failure. No sump heater is to be required. The bearing system shall use no more than 500 watts of energy during its normal operation and it must also have an auto balance capability in the case of any external vibration or out of balance event occurring.

5. Prime Mover: A direct drive synchronous permanent magnet brushless DC motor of the hermetic type of sufficient size to efficiently fulfill compressor horsepower requirements. Motor shall be liquid refrigerant cooled with internal thermal overload protection devices embedded in the winding of each phase.

6. Motor Starter: The main motor starter is to be fully integrated into the compressor and shall be of the soft-start type with a maximum starting current of 20% of the full load current of the compressor. It must be fully integrated with the motors variable speed control system and it must be factory tested during the run test of the unit.

7. Variable Frequency Drive (VFD): The chiller shall be equipped with a fully integrated VFD to automatically regulate compressor speed in response to cooling load and compressor pressure lift. The chiller control shall coordinate compressor speed and guide vane position to optimize chiller efficiency.

a. A digital regulator shall provide VFD control.

b. The VFD shall have 110% continuous overload of continuous amp rating with no time limit, PWM (pulse width modulated) output, IGBT (insulated gate bipolar transistors) power technology, full power rating at 2kHz, DC bus inductor (choke), and wireless construction. The inverter unit shall be refrigerant cooled and shall be fully integrated into the compressor package.

1. Central Control System

1. Scheduling of the various compressors shall be performed by a microprocessor based control system (Master Controller). A new lead compressor is selected every 24 hours to assure even distribution of compressor run time.

2. The Master Controller shall monitor and report the following on each refrigeration system:

 a. Discharge Pressure Fault
 b. Suction Pressure Fault
 c. Compressor Winding Temperature
 d. Suction Temperature
 e. Evaporator Leaving Chilled Water Temperature

3. The Master Controller shall be powered by the chillers single point power distribution system for self-cleaning of the strainer system that is controlled and powered by the chiller.

L. Single Point Power: Chiller shall be equipped with a pre-engineered genuine buss bar electrical system for single point power rated at a 5,000 amp SCCR. Where the equipment size exceeds the amp rating of the buss bar, multiple power connections may be applied. Pre-engineered system shall also incorporate individual module isolation circuit breakers for full redundancy and ability of a module to be taken off-line for repair while the rest of the modules continue to operate. Individual power feeds to each module shall be unacceptable.

a. OPTIONAL—SCCR greater than 5,000 amps: Contact factory. Depending on voltage and module size SCCR up to 85,000 may be available. Some higher SCRR will require fused protection as opposed to the standard isolation circuit breakers.

M. OPTIONAL: Sound Reduction Panel Package

Each module shall be supplied with a light weight aluminum frame with sound reduction panels. Panels are powder coated 20 gauge steel with 1” of fiberglass insulation to reduce sound levels. Optional sound package will reduce sound pressure levels measured at 1 meter at a minimum of 12 dBA.

N. OPTIONAL: IFM flow switch per module

Integral to each module and powered by the module for individual module proof of flow and flow safety. Modules without independent IFM switches per module are not acceptable alternates.

O. OPTIONAL: Total Access Design

Isolation valves shall be installed between the heat exchangers and water supply mains for heat exchanger isolation and removal without the requirement to remove a module or shut down the entire chiller allowing for total access to all serviceable components.

2.03 SAFETIES, CONTROLS AND OPERATION

A. Chiller safety controls system shall be provided with the unit (minimum) as follows:

1. Low evaporator refrigerant pressure
2. Loss of flow through the evaporator
3. Loss of flow through the condenser
4. High condenser refrigerant pressure

Continued on next page.
3.02 Water Treatment Requirements
A. Supply water for both the chilled water and condenser water circuits shall be analyzed and treated by a professional water treatment specialist who is familiar with the operating conditions and materials of construction specified for the chiller's heat exchangers, headers and associated piping. Cycles of concentration shall be controlled such that recirculated water quality for modular chillers using 316 stainless steel brazed plate heat exchangers and carbon steel headers is maintained within the following parameters:

1. pH Greater than 7 and less than 9
2. Total Dissolved Solids (TDS) Less than 1000 ppm
3. Hardness as CaCO₃ 30 to 500 ppm
4. Alkalinity as CaCO₃ 30 to 500 ppm
5. Chlorides Less than 200 ppm
6. Sulfates Less than 200 ppm

3.03 Warranty and Start-Up
A. Manufacturer's Warranty: Manufacturer shall provide full parts-only warranty coverage for entire chiller for a period of one year. All parts shall be warranted against defects in material and workmanship. Similar parts-only coverage shall be provided for the chillers compressors for a period of five years. The warranty period shall commence either on the equipment start-up date or six months after shipment, whichever is earlier.
B. Manufacturer shall provide the services of a factory authorized service engineer to provide complete start-up supervision. The factory authorized service engineer shall also be responsible for assembly of the chillers cabinet package and electrical bus bar system. After start-up a manufacturer's representative shall provide a minimum of eight hours of operator training to the owner's designated representative(s).

PART 3 INSTALLATION
3.01 PIPING SYSTEM FLUSHING PROCEDURE
A. Before connecting the chiller to the condenser and chilled water loop, the piping loops shall be flushed with a detergent and hot water (110-130°F) mixture to remove previously accumulated dirt and other organics. In old piping systems with heavy encrustation of inorganic materials, consult a water treatment specialist for proper passivation and/or removal of these contaminants.
B. During the flushing, a 30 mesh (max.) Y-strainers (or acceptable equivalent) shall be in place in the system piping and examined periodically as necessary to remove collected residue. The use of on board chiller strainers shall not be acceptable. The flushing process shall take no less than 6 hours or until the strainers when examined after each flushing are clean. Old systems with heavy encrustation shall be flushed for a minimum of 24 hours and may take as long as 48 hours before the filters run clean. Detergent and acid concentrations shall be used in strict accordance with the respective chemical manufacturer’s instructions. After flushing with the detergent and/or dilute acid concentrations the system loop shall be purged with clean water for at least one hour to ensure that all residual cleaning chemicals have been flushed out.
C. Prior to supplying water to the chiller the Water Treatment Specification shall be consulted for requirements regarding the water quality during chiller operation. The appropriate chiller manufacturer's service literature shall be available to the operator and/or service contractor and consulted for guidelines concerning preventative maintenance and off-season shutdown procedures.
Originators. Innovators. Never the Imitators.

Originators…
Multistack invented the modular water chiller. It started with a radically simple idea: chiller modules that could be brought into the equipment room one at a time, through standard doorways and down elevators, to form a fully integrated chiller system. The idea launched a revolution and transformed Multistack into a leader in the commercial water-chiller industry.

Innovators…
Multistack perfected the modular chiller and leads the industry in innovative and environmentally friendly modular solutions. Since founding in the late 1980s, Multistack has engineered, manufactured, and distributed an impressive array of modular air conditioning firsts: the first on-board strainer, the first modular automatic blow-down device, the first modular chiller for variable flow, the first modular chiller-heater (heat pump), the first modular heat-recovery chiller, the first modular air-to-water heat pump, the first modular chiller to utilize MagLev™ compressor technology, and the first modular chiller to utilize R-410A.

Never the Imitators…
Multistack sets the standard in the industry for superior customer service, fast and on time shipment, superior product quality, and new product development. Our pioneering leadership in environmental issues is well documented. If you want the best, be sure to specify the original — Multistack®.