Water Cooled MagLev™ Centrifugal Modular Chiller

Product Data Catalog
MS-080T
Multistack Modular Flexibility with MagLev™ Centrifugal Compressor Performance

80-Ton Modules for Up to 850-Ton Chiller Arrays

Cutting Edge Compressor Technology
- MagLev™ compressor with magnetic levitation bearings
- Oil-free design
- Quieter than typical background noise
- Soft start—only 2 amps at 460V
- Superior part load efficiency
- Integrated VFD control
- Environmentally friendly R-134a refrigerant; low refrigerant volume qualifies for LEED® EA credit

Superior Dependability
- Multiple independent systems for redundancy
- Comprehensive computer monitoring
- Automatic lead-lag
- Automatic fault recording

Easy Installation
- Compact modules fit through most doorways and into freight elevators - ideal for retrofit and renovation projects
- Modules connect quickly and easily
- Factory charged and run-tested
- Small refrigerant charge compliant with ASHRAE 15 in most cases

High Flexibility
- Install only the capacity required as needed, when needed
- Operates only the capacity required by the load
- Integrates fully with building management through BACnet®, ModBus®, or LON

Serviceability
- Service can be performed on a convenient, non-emergency basis
- Optional Total Access™ configuration makes service even easier by placing heat exchangers at outside of frame

High Performance in a Small Footprint
Optional Total Access™ Configuration Makes Service Even Easier

Contents
- Features, Benefits...............................2-3
- General Information..............................4
- Dimensions..5-8
- Piping Diagrams....................................9
- Electrical Data.....................................10
- Guide Specifications.........................11-13
Master Controller
- Stages and monitors status of up to eight MS-080T modules.
- Provides interface with all system variables and set points.

LCD Display
- 4X20 character backlit LCD displays system and chiller variables and status of both compressor and chiller system performance.
- Displays (but not limited to) refrigerant temperatures and pressures, water temperatures, compressor speeds (actual and desired), detailed fault information, compressor run hours, and system capacity.

System Interface Portal
- Integrates chiller with building management system through BacNet®, ModBus®, or LON.

Module Controller and Hand-Off/Auto Control
- Receives direction from the master controller and provides for stand-alone operation if the master controller fails or if master controller communication is lost.
- Each module controller communicates directly with its module’s MagLev™ compressor through ModBus®.
Model Number Information

<table>
<thead>
<tr>
<th>MS</th>
<th>080</th>
<th>T</th>
<th>C or N</th>
<th>1</th>
<th>H</th>
<th>1</th>
<th>W</th>
<th>0</th>
<th>A</th>
<th>A</th>
<th>-134a</th>
</tr>
</thead>
</table>

- **Refrigerant**
- **Condenser**
- **Evaporator**
- AHRI Certified (C - certified, N - Not certified)
- **Application**
- **Voltage**
- **Module Number** (1 - single, 2 - multiple)
- **Configuration**

AHRI Certified

Compressor (MagLev® Centrifugal)

Module Nominal Capacity (80 tons)

1. 1 - Standard, 2 - Total access, 3 - Evap extended headers, 4 - Cond extended headers, 5 - Both extended headers, V - others
3. A - Air Cooled split, D - Cond unit, F - Fluid cooler (high temp), W - Water cooled
4. A - Brazed SS, B - Brazed SMO, V - Other
5. A - Brazed SS, B - Brazed SMO, C - S&T Copper, D - S&T Cu-Ni, V - Other

GENERAL DATA

<table>
<thead>
<tr>
<th>Compressor Type</th>
<th>MagLev™ Centrifugal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry weight (lbs.)</td>
<td>265</td>
</tr>
<tr>
<td>Normal Capacity (tons)</td>
<td>80 Tons</td>
</tr>
<tr>
<td>Quantity</td>
<td>1</td>
</tr>
</tbody>
</table>

Evaporator

<table>
<thead>
<tr>
<th>Evaporator</th>
<th>Brazed Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lbs.)</td>
<td>417</td>
</tr>
<tr>
<td>Water Storage (gallons)</td>
<td>11.5</td>
</tr>
<tr>
<td>Quantity</td>
<td>1</td>
</tr>
<tr>
<td>Header System (gallons)</td>
<td>15.1</td>
</tr>
</tbody>
</table>

Condenser

<table>
<thead>
<tr>
<th>Condenser</th>
<th>Brazed Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lbs.)</td>
<td>484</td>
</tr>
<tr>
<td>Water storage (gallons)</td>
<td>12.6</td>
</tr>
<tr>
<td>Quantity</td>
<td>1</td>
</tr>
<tr>
<td>Header System (gallons)</td>
<td>15.1</td>
</tr>
</tbody>
</table>

Refrigerant Type/Charge (lbs./circuit)

- R-134a
- 80 lbs. w Brazed Plate Condenser
- 110 lbs. w Shell & Tube Condenser

Number of Circuits

- 1

Operating Weights (lbs.)

- 2,880 (2,550 Total Access)

Shipping Weight (lbs.)

- 2,600 (2,270 Total Access)

Enclosure Panel Weight Addition- Per Module

- 177 lbs.

Multistack has a policy of continual improvement and reserves the right to change product design, literature and specifications without notice. For more information on this and other Multistack products, contact your nearest Multistack dealer.
Water-Cooled MagLev™ Modular Chiller

Dimensions

Typical MS-080T Chiller Modules

- No Enclosure Panels
- Refer to Submittal Drawings for As-Built Dimensions

- Master Control (May Be On Either End)
- Multiflush™ (May Be On Other Side)
- 42" Recommended Service Clearance

- Entering/Leaving Condenser Water (May Be Other End)
- 36" Recommended Service Clearance

- Junction Box
- High Voltage Side
- 42" Multistack Recommended Clearance
- For Required Electrical Clearances Consult Local and National Electrical Codes

- Entering/Leaving Chilled Water (May Be Other End)
- 36" Recommended Service Clearance

- Main Power Connection for Multiple Modules May Be On Either End.
- NOTE: Main Power Connection for a Direct Connect Chiller is Inside the Module.

- Solenoid Valve (N.C.)
- 1-1/4" N.P.S.
- Full Port
- Drain Hose (By Others)

- Minimum Size Vibration Isolators 4"x4"x3/8", Max. Load 50 P.S.I.

- 4"x4"x1/8" Wall Structural Foot Rails Resting on Waffle Vibration Isolators, 32" Ctr./Ctr., Supplied by Others

- Base Rail Length = (No. of Modules x 32") + 8"

- Drain w/ hose BibB (2)
Water-Cooled MagLev™ Modular Chiller

Dimensions

Typical MS-080T Chiller Modules

- **Optional Total Access™ Configuration No Enclosure Panels** Refer to Submittal Drawings for As-Built Dimensions

Entering/Leaving Chilled/Condenser Water

- **Dimensions**
 - **36" Recommended Service Clearance**
 - **34" Recommended Service Clearance**
 - **42" Multistack Recommended Clearance**

High Voltage Side

- **42" Multistack Recommended Clearance**
- **For Required Electrical Clearances Consult Local and National Electrical Codes**

Main Power Connection

- **Connection for Multiple Modules May Be On Either End.**
- **NOTE:** Main Power Connection for a Direct Connect Chiller is Inside the Module.
- **Drain Hose (By Others)**

Minimum Size Vibration Isolators 4"x4"x3/8". Max. Load 50 P.S.I.

Pressure Taps

- **9"**

Chilled and Condenser Water Connections

- **4 Stubs Ea. 8" Sch 40 Steel Pipe Butt Weld or Grooved Connection.**

Junction Box

- **78-5/16" x 73-15/16" x 4"**
- **3/8"**

Drain w/ hose BIBB (2)

Entering Chilled Water

- **Leaving Chilled Water**
- **Leaving Condenser Water**
- **Entering Condenser Water**

8" Schd40 Pipe w/ Grooved Connection Typical

Solenoid Valve (N.C.) 1-1/4" N.P.S. Full Port

Number of Modules x 34"

Base Rail Length = (No. of Modules x 34") + 8"

4"x4"x1/8"-Wall Structural Foot Rails Resting on Waffle Vibration Isolators, 32" Ctr./Ctr., Supplied by Others
Water-Cooled MagLev™ Modular Chiller

Dimensions

Optional Total Access™ Configuration With Enclosure Panels
Refer to Submittal Drawings for As-Built Dimensions

Typical MS-080T Chiller Modules

Entering/Leaving Chilled/Condenser Water

42" Recommended Service Clearance

36" Recommended Service Clearance

High Voltage Side
42" Multistack Recommended Clearance
For Required Electrical Clearances Consult Local and National Electrical Codes

32" Recommended Service Clearance
44" Recommended Service Clearance

Base Rail Length = (No. of Modules x 34") + 8"

Pressure Taps

9”

Minimum Size Vibration Isolators 4"x4"x3/8", Max. Load 50 P.S.I.

4"x4"x1/8" Wall Structural Foot Rails Resting on Waffle Vibration Isolators, 32" Ctr./Ctr., Supplied by Others

Solenoid Valve (N.C.) 1-1/4” N.P.S. Full Port

Main Power Connection for Multiple Modules May Be On Either End. NOTE: Main Power Connection for Direct Connect Chillers is inside the Module.

Drain Hose (By Others)

Soldered Connection. 8” Schd 40 Pipe w/ Grooved Connection

Junction Box

Entering Chilled Water
Leaving Chilled Water
Leaving Condenser Water
Entering Condenser Water

Number of Modules x 34"

Pressure Taps
Required Chilled Water Piping

Pressure Taps
Supplied and installed by Multistack.

1/2” Sensor Pockets
Supplied by Multistack for installation in Multistack supplied pipe stubs. To be installed by others.

Standard “Y” Strainer
Supplied and installed by others. Note: Select strainer based on water quality.

Chilled Water Pump
Supplied and installed by others.

From building load
To building load

Condenser Piping with Head Pressure Control

Pressure Taps
Supplied and installed by Multistack.

1/2” Sensor Pockets
Supplied by Multistack. Install pockets 30 inches from end of chiller; supplied and installed by others.

Standard “Y” Strainer
Supplied and installed by others. Note: Select strainer based on water quality.

Strainer Isolation Valve
Supplied and installed by others.

Condenser Water Pump
Supplied and installed by others.

To cooling tower
From cooling tower

3-Way Condenser By-Pass Valve
Recommended, supplied and installed in the building by others.
Legend
1. Components and wiring by others. (18 AWG Min. wire).
2. Inputs to terminals 4 through 8 of TB11 must be wired closed if not used.
3. External inputs (Closed to operate).
 EX1 Manual reset required to resume operation.
 EX2 Auto reset (Remote start/stop).
 EX4 Auto reset (Power phase monitor [optional] input).
 FS1 Flow switch (Chilled water).
 FS2 Flow switch (Condenser water).
 MS1 Aux. interlock (Chilled water pump starter).
 MS2 Aux. interlock (Condenser water pump starter).
 RS+ Reset signal (Software selectable 0-10 VDC, 4-20 mA).
 RS- Reset signal (Software selectable 0-10 VDC, 4-20 mA).
4. External outputs.
 CAR Customer alarm relay (24 VAC, 5 VA max).
 CPR Condenser pump relay (24 VAC, 5 VA max).
 FLR Full load relay (24 VAC, 5 VA max).
 DRSV Debris removal solenoid valve (24 VAC, 6 W, 16VA)
 Max of (2) DRSV in this circuit.
5. Sensor Inputs
 ECW Entering condenser water.
 LCW Leaving condenser water.
 ECHW Entering chilled water.
 LCHW Leaving chilled water.

System Wire and Fuse Sizing

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Volts/Hz/PH</th>
<th>Tons</th>
<th>Compressor RLA</th>
<th>LRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-080T1</td>
<td>460/60/3</td>
<td>80</td>
<td>96</td>
<td>132</td>
</tr>
<tr>
<td>MS-080T1</td>
<td>575/60/3</td>
<td>80</td>
<td>78</td>
<td>110</td>
</tr>
</tbody>
</table>

Wiring Sizing
(MCA=minimum circuit ampacity)
MCA = (1.25 x RLA1*) + RLA2 + RLA3

Fuse Sizing
(MF = maximum fuse size)
MF = (2.25 x RLA1*) + RLA2 + RLA3

Notes:
1. *RLA1 = RLA of the largest motor in the system. RLA2 & RLA3 = RLA of other motors in the system.
2. Wire sizing is based on National Electrical Code (NEC) rating for 75°C wire, with 3 wires per conduit.
3. Wiring distance from branch circuit shall not exceed 100 feet.
Multistack has a policy of continual improvement and reserves the right to change product design, literature and specifications without notice. For more information on this and other Multistack products, contact your nearest Multistack dealer.
3. The capacity control should primarily be achieved by varying the compressors operating speed and a movable inlet guide vane shall only be used in the case of a surge or choke condition arising during normal operation. The movable inlet guide vane shall be of the electro-mechanical type.

4. Bearing System: The compressor shall use an oil-free bearing system of the digitally controlled home-polo magnetic bearing type. The bearings shall have a fully integrated back up bearing system and shall have a self generating power system so that the bearings shall be able to stay levitated in the case of a power failure. No sump heater is to be required. The bearing system shall use no more than 500 watts of energy during its normal operation and it must also have an auto balance capability in the case of any external vibration or out of balance event occurring.

5. Prime Mover: A direct drive synchronous permanent magnet brushless DC motor of the hermetic type of sufficient size to efficiently fulfill compressor horsepower requirements. Motor shall be liquid refrigerant cooled with internal thermal overload protection devices embedded in the winding of each phase

6. Motor Starter: The main motor starter is to be fully integrated into the compressor and shall be of the soft-start type with a maximum starting current of 20% of the full load current of the compressor. It must be fully integrated with the motors variable speed control system and it must be factory tested during the run test of the unit.

7. Variable Frequency Drive (VFD): The chiller shall be equipped with a fully integrated VFD to automatically regulate compressor speed in response to cooling load and compressor pressure lift. The chiller control shall coordinate compressor speed and guide vane position to optimize chiller efficiency.
 a. A digital regulator shall provide V/Hz control.
 b. The VFD shall have 100% overload of continuous amp rating with no time limit, PWM (pulse width modulated) output, IGBT (insulated gate bipolar transistors) power technology, full power rating at 2kHz, DC bus inductor (choke), and wireless construction. The inverter unit shall be refrigerant cooled and shall be fully integrated into the compressor package.

I. Central Control System

1. Scheduling of the various compressors shall be performed by a microcontroller based control system (Master Controller). A new lead compressor is selected every 24 hours to assure even distribution of compressor run time.

2. The Master Controller shall monitor and report the following on each refrigeration system:
 a. Discharge Pressure Fault
 b. Suction Pressure Fault
 c. Compressor Winding Temperature
 d. Suction Temperature
 e. Evaporator Leaving Chilled Water Temperature

3. The Master Controller shall be powered by the chillers single point power connection and shall monitor and report these system parameters:
 a. Chilled Water Entering and Leaving Temperature
 b. Condenser Water Entering and Leaving Temperature
 c. Chilled Water and Condenser Water Flow

4. An out of tolerance indication from these controls or sensors shall cause a fault indication at the Master Controller and shutdown of that compressor with the transfer of load requirements to the next available compressor. In the case of a System Fault the entire chiller will be shut down. When a fault occurs, the Master Controller shall record conditions at the time of the fault and store the data for recall. This information shall be capable of being recalled through the keypad of the Master Controller and displayed on the Master Controller’s 2 line by 40 character back-lit LCD. A history of faults shall be maintained including date and time of each fault (up to the last 20 occurrences).

5. Individual monitoring of leaving chilled water temperatures from each refrigeration system shall be programmed to protect against freeze-up.

6. The control system shall monitor entering and leaving chilled water temperatures to determine system load and select the number of compressor circuits required to operate. Response times and set points shall be adjustable. The system shall provide for variable time between compressor sequencing and temperature sensing, so as to optimize the chiller performance to different existing building loads.

7. OPTIONAL: INTEROPERABILITY
 The chiller shall be capable of interfacing to a building automation system. Interface shall be accomplished using an interoperability Web portal and shall be capable of communication over BACNet, Modbus or LON.

8. OPTIONAL: Fail To Run Mode (FRM)
 Chiller shall be capable of operation in the event that the Master Controller has lost communication. FRM provides the ability to switch the chiller into annual mode automatically keeping the chiller online until a replacement Master Controller can be provided. FRM requires a power phase monitor per module.
 a. OPTIONAL: IFM flow switch per module. Integral to each module and powered by the module for individual module proof of flow and flow safety. Modules without independent IFM switches per module are not acceptable alternates.

J. Chiller shall have a single point power connection. External inputs and outputs to be compatible with the building management system. Inputs/Outputs include:
 1. Remote Start/Stop
 2. Customer Alarm Relay
 3. Customer Chilled/Load Limit Reset Signal
 4. ECW to Mechanical Cooling Module
 5. LCW from Mechanical Cooling Module
 6. ECW to Mechanical Cooling Module
 7. LCW from Mechanical Cooling Module
 8. Power Phase Monitor (Optional)
 9. Chilled Water Flow Switch Input
 10. Condenser Water Flow Switch Input
 11. Full Load Indicator Relay
 12. Condenser Pump Relay
 13. DDRS Condenser Multiflush Relay
 14. Chilled Water Pump Relay

K. Each inlet water header shall incorporate a built in 30-mesh (maximum) in-line strainer system to prevent heat exchanger fouling and accommodate 100% flow filtration with a minimum surface area of 475 sq. inches per module. Condenser-side strainer system shall incorporate an automatic debris blow-down system for self-cleaning of the strainer system that is controlled and powered by the chiller.

L. Single Point Power: Chiller shall be equipped with a pre-engineered genuine bus bar electrical system for single point power rated at a 5,000 amp SCCR. Where the equipment size exceeds the amp rating of the bus bar, multiple power connections may be applied. Pre-engineered system shall also incorporate individual module isolation circuit breakers for full redundancy and ability of a module to be taken off-line for repair while the rest of the modules continue to operate. Individual power feeds to each module shall be unacceptable.
 a. OPTIONAL——SCCR greater than 5,000 amps: Contact factory. Depending on voltage and module size SCCR up to 85,000 may be available. Some higher SCCR will require fused protection as opposed to the standard isolation circuit breakers.

M. OPTIONAL: Sound Reduction Panel Package
 Each module shall be supplied with a light weight aluminum frame with sound reduction panels. Panels are powder coated 20 gauge steel with 1” of fiberglass insulation to reduce sound levels. Optional sound package will reduce sound levels 100% and shall be fully integrated into the module.

N. OPTIONAL: IFM flow switch per module
 Integral to each module and powered by the module for individual module proof of flow and flow safety. Modules without independent IFM switches per module are not acceptable alternates.

O. OPTIONAL: Total Access Design
 Isolation valves shall be installed between the heat exchangers and water supply mains for heat exchanger isolation and removal without the requirement to remove a module or shut down the entire chiller allowing for total access to all serviceable components.

2.03 SAFETIES, CONTROLS AND OPERATION

A. Chiller safety controls system shall be provided with the unit (minimum) as follows:
 1. Low evaporator refrigerant pressure
 2. Loss of flow through the evaporator
 3. Loss of flow through the condenser
 4. High condenser refrigerant pressure

Continued on next page.
5. High compressor motor temperature
6. Low suction gas temperature
7. Low leaving evaporator water temperature
B. Failure of chiller to start or chiller shutdown due to any of the above safety cutouts shall be annunciated by display of the appropriate diagnostic description at the unit control panel. This annunciation will be in plain English. Alphanumeric codes shall be unacceptable.
C. The chiller shall be furnished with a Master Controller as an integral portion of the chiller control circuitry to provide the following functions:
1. Provide automatic chiller shutdown during periods when the load level decreases below the normal operating requirements of the chiller. Upon an increase in load, the chiller shall automatically restart.
2. Provisions for connection to automatically enable the chiller from a remote energy management system.
3. The control panel shall provide alphanumeric display showing all system parameters in the English language with numeric data in English units.
4. Each module shall contain a slave controller that will allow any module to run in the event of a master controller failure or loss of communication with the master controller via an on/off/manual toggle switch.
D. Normal Chiller Operation
1. When chiller is enabled, the factory supplied Master Controller modulates the chiller capacity from minimum to maximum as required by building load.
2. The chiller control system shall respond to Entering Water Temperature and will have an integral reset based on entering water temperature to provide for efficient operation at part-load conditions.
E. Power Phase Monitor
1. Provide a power phase monitor on the incoming power supply to each compressor. This device shall prevent the chiller from operating during periods when the incoming power is unsuitable for proper operation.
2. The power phase monitor shall provide protection from these conditions:
 a. Low voltage (brown out)
 b. Incorrect phase rotation
 c. Loss of phase
 d. Phase imbalance

PART 3 INSTALLATION
3.01 PIPING SYSTEM FLUSHING PROCEDURE
A. Before connecting the chiller to the condenser and chilled water loop, the piping loops shall be flushed with a detergent and hot water (110-130°F) mixture to remove previously accumulated dirt and other organics. In old piping systems with heavy encrustation of inorganic materials, consult a water treatment specialist for proper passivation and/or removal of these contaminants.
B. During the flushing, a 30 mesh (max.) Y-strainers (or acceptable equivalent) shall be in place in the system piping and examined periodically as necessary to remove collected residue. The use of onboard chiller strainers shall not be acceptable. The flushing process shall take no less than 6 hours or until the strainers when examined after each flushing are clean. Old systems with heavy encrustation shall be flushed for a minimum of 24 hours and may take as long as 48 hours before the filters run clean. Detergent and acid concentrations shall be used in strict accordance with the respective chemical manufacturer’s instructions. After flushing with the detergent and/or dilute acid concentrations the system loop shall be purged with clean water for at least one hour to ensure that all residual cleaning chemicals have been flushed out.
C. Prior to supplying water to the chiller the Water Treatment Specification shall be consulted for requirements regarding the water quality during chiller operation. The appropriate chiller manufacturer’s service literature shall be available to the operator and/or service contractor and consulted for guidelines concerning preventative maintenance and off-season shutdown procedures.

3.02 Water Treatment Requirements
A. Supply water for both the chilled water and condenser water circuits shall be analyzed and treated by a professional water treatment specialist who is familiar with the operating conditions and materials of construction specified for the chiller’s heat exchangers, headers and associated piping. Cycles of concentration shall be controlled such that recirculated water quality for modular chillers using 316 stainless steel brazed plate heat exchangers and carbon steel headers is maintained within the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Greater than 7 and less than 9</td>
</tr>
<tr>
<td>2. Total Dissolved Solids (TDS)</td>
<td>Less than 1000 ppm</td>
</tr>
<tr>
<td>3. Hardness as CaCO3</td>
<td>30 to 500 ppm</td>
</tr>
<tr>
<td>4. Alkalinity as Ca CO3</td>
<td>30 to 500 ppm</td>
</tr>
<tr>
<td>5. Chlorides</td>
<td>Less than 200 ppm</td>
</tr>
<tr>
<td>6. Sulfates</td>
<td>Less than 200 ppm</td>
</tr>
</tbody>
</table>

3.03 Warranty and Start-Up
A. Manufacturer’s Warranty: Manufacturer shall provide full parts-only warranty coverage for entire chiller for a period of one year. All parts shall be warranted against defects in material and workmanship. Similar parts-only coverage shall be provided for the chillers compressors for a period of five years. The warranty period shall commence either on the equipment start-up date or six months after shipment, whichever is earlier.
B. Manufacturer shall provide the services of a factory authorized service engineer to provide complete start-up supervision. The factory authorized service engineer shall also be responsible for assembly of the chillers cabinetry package and electrical bus bar system. After start-up a manufacturer’s representative shall provide a minimum of eight hours of operator training to the owner’s designated representative(s).
Originators. Innovators. Never the Imitators.™

Originators...
Multistack invented the modular water chiller. It started with a radically simple idea: chiller modules that could be brought into the equipment room one at a time, through standard doorways and down elevators, to form a fully integrated chiller system. The idea launched a revolution and transformed Multistack into a leader in the commercial water-chiller industry.

Innovators...
Multistack perfected the modular chiller and leads the industry in innovative and environmentally friendly modular solutions. Since founding in the late 1980s, Multistack has engineered, manufactured, and distributed an impressive array of modular air conditioning firsts: the first on-board strainer, the first modular automatic blow-down device, the first modular chiller for variable flow, the first modular chiller-heater (heat pump), the first modular heat-recovery chiller, the first modular air-to-water heat pump, the first modular chiller to utilize MagLev™ compressor technology, and the first modular chiller to utilize R-410A.

Never the Imitators...
Multistack sets the standard in the industry for superior customer service, fast and on time shipment, superior product quality, and new product development. Our pioneering leadership in environmental issues is well documented. If you want the best, be sure to specify the original – Multistack®.